希赛考试网
首页 > 软考 > 系统架构设计师

常见的大数据分析模型

希赛网 2023-11-16 15:20:41

随着信息技术的飞速发展,大数据已经成为当下的一大热门话题。而大数据分析,也是越来越多企业所需要重视的环节之一。在大数据分析中,分析模型是其中一个重要的组成部分。本文将就常见的大数据分析模型展开全方位的介绍,希望可以帮助初学者更好的理解和掌握这一领域。

1. 关联分析模型

关联分析是发现数据集中项之间的关系的一种方法,通常用于市场分析、购物篮分析和数据挖掘等领域。该模型可以自动分析出不同项之间的相关性,从而找到其中的规律性。如在购物数据中,查询了洗发水和护发素这两个产品,还有多少用户会同时购买护手霜,并且这种同时购买的现象是否具有普遍性等等。

2. 聚类分析模型

聚类分析是将大量的对象,根据其固有性质和特征,划分为若干类别或者群体的方法。该模型经常用于客户分类、精准广告投放、风控等领域。通过聚类分析,可以发现数据中的相似度和异质性等信息,为后续的决策提供支持。

3. 决策树分析模型

决策树分析是一种数据挖掘技术,通过构建决策树的形式,分析数据间的关系和数据特点,从而提供决策支持。决策树分析是一种有效的工具,可以用来预测和分类。例如在预测一名球员是否会受伤时,可以通过决策树来分析球员的年龄、身体素质等因素,从而给出一个科学的判断。

4. 神经网络模型

神经网络分析模型是一种模仿生物神经网络的数学模型,用于发现数据之间的非线性关系。该模型在机器学习和深度学习中被广泛应用,如图像识别、自然语言处理和人工智能等方面。神经网络可以模仿人脑的工作方式,自主学习和自我适应,从而提高分析的准确性。

综上所述,在大数据分析中常见的分析模型有关联分析模型、聚类分析模型、决策树分析模型和神经网络模型。这些模型各有不同的应用场景和算法实现方式,适用于不同的数据分析任务。因此,选择合适的分析模型,是进行数据分析的关键所在。

系统架构设计师 资料下载
备考资料包大放送!涵盖报考指南、考情深度解析、知识点全面梳理、思维导图等,免费领取,助你备考无忧!
立即下载
系统架构设计师 历年真题
汇聚经典真题,展现考试脉络。精准覆盖考点,助您深入备考。细致解析,助您查漏补缺。
立即做题

软考资格查询系统

扫一扫,自助查询报考条件